107 research outputs found

    Integer Echo State Networks: Hyperdimensional Reservoir Computing

    Full text link
    We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed Integer Echo State Network (intESN) is a vector containing only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The intESN architecture is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such an architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss.Comment: 10 pages, 10 figures, 1 tabl

    An Approach for Self-Adaptive Path Loss Modelling for Positioning in Underground Environments

    Get PDF
    This paper proposes a real-time self-adaptive approach for accurate path loss estimation in underground mines or tunnels based on signal strength measurements from heterogeneous radio communication technologies. The proposed model features simplicity of implementation. The methodology is validated in simulations and verified by measurements taken in real environments. The proposed method leverages accuracy of positioning matching the existing approaches while requiring smaller engineering efforts

    On Effects of Compression with Hyperdimensional Computing in Distributed Randomized Neural Networks

    Full text link
    A change of the prevalent supervised learning techniques is foreseeable in the near future: from the complex, computational expensive algorithms to more flexible and elementary training ones. The strong revitalization of randomized algorithms can be framed in this prospect steering. We recently proposed a model for distributed classification based on randomized neural networks and hyperdimensional computing, which takes into account cost of information exchange between agents using compression. The use of compression is important as it addresses the issues related to the communication bottleneck, however, the original approach is rigid in the way the compression is used. Therefore, in this work, we propose a more flexible approach to compression and compare it to conventional compression algorithms, dimensionality reduction, and quantization techniques.Comment: 12 pages, 3 figure

    Heteroclinic cycles and chaos in a system of four identical phase oscillators with global biharmonic coupling

    Full text link
    We study a system of four identical globally coupled phase oscillators with biharmonic coupling function. Its dimension and the type of coupling make it the minimal system of Kuramoto-type (both in the sense of the phase space's dimension and the number of harmonics) that supports chaotic dynamics. However, to the best of our knowledge, there is still no numerical evidence for the existence of chaos in this system. The dynamics of such systems is tightly connected with the action of the symmetry group on its phase space. The presence of symmetries might lead to an emergence of chaos due to scenarios involving specific heteroclinic cycles. We suggest an approach for searching such heteroclinic cycles and showcase first examples of chaos in this system found by using this approach.Comment: 18 pages, 8 figure

    Preface

    Get PDF

    Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks

    Full text link
    The deployment of machine learning algorithms on resource-constrained edge devices is an important challenge from both theoretical and applied points of view. In this article, we focus on resource-efficient randomly connected neural networks known as Random Vector Functional Link (RVFL) networks since their simple design and extremely fast training time make them very attractive for solving many applied classification tasks. We propose to represent input features via the density-based encoding known in the area of stochastic computing and use the operations of binding and bundling from the area of hyperdimensional computing for obtaining the activations of the hidden neurons. Using a collection of 121 real-world datasets from the UCI Machine Learning Repository, we empirically show that the proposed approach demonstrates higher average accuracy than the conventional RVFL. We also demonstrate that it is possible to represent the readout matrix using only integers in a limited range with minimal loss in the accuracy. In this case, the proposed approach operates only on small n-bits integers, which results in a computationally efficient architecture. Finally, through hardware FPGA implementations, we show that such an approach consumes approximately eleven times less energy than that of the conventional RVFL.Comment: 7 pages, 7 figure
    • …
    corecore